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Estimation of connective constants for two-dimensional lattices from self-avoiding walks
in the two-dimensional continuum
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The attrition rate of random walks with excluded volum@®,_), represents the mean number of
“failed” (or “rejected”) chains between any two successfully embeditelépendentonfigurationsW and
W’. In this work, we studyPy_,y) as a function of the number of monomers and the excluded volume
interaction for chains in the two-dimensional continuum. Our result can also be applied to lattice models,
provided that an “effective” radius of excluded volume is introduced. The relation betweetPthe )
values in the continuum and in lattice models leads to a simple analytical approximation for the connective
constants of all common two-dimensional lattices.
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Polymers in solution behave as flexible molecules, whoséattices are not known, although numerical estimations and
instantaneous spatial configurations can be approximated some rigorous bounds are availabd. The best current es-
random walks on a lattice or the continulif]. In this work, timates appear in the last column of Tabl¢9-11]. (The
we are interested in some properties of two-dimensi@@ia]  four 2D lattices discussed here are indicated in Fig. 1. We
polymers. These models are a convenient tool to study adshall use the shorthand notation HC latti&elattice, S lat-
sorption and critical phenomena on surfaf®s When mod- tice, and T lattice when referring to the honeycomb,
eling polymer behavior in a good solvefi8], two ap- Kagome square, and triangular lattices, respectively.
proaches are commonly followed: random walks with Connective constants are important parameters in the
excluded volume interaction in the 2D continuum, or self-modeling of lattice polymers, since they can be used for
avoiding walks(SAW'’s) embedded in a particular 2D lattice. computing some configurationally averaged physical proper-
Here, we discuss some relations between these two modelSes. In this work, our goal is to estimate the different con-

In our case, we deal with the simplest SAW model, onenective constants by usirgysingle unified approachro this
where chains hava identical monomersi.e., the “nodes”  end, we will establish a relationship between walks with ex-
or “vertices” of the walk. Many properties of this model cluded volume in the 2D continuum and SAW'’s in particular
have been well characterizé¢d]. A great deal of work has 2D lattices. Since all the lattices are particular cases of the
been devoted to study the mean shape properties of SAW’spntinuum, the latter can provide insights on underlying
in particular their leading scaling behavid]. The nature of common properties not available from single-lattice studies.
the corrections to scaling in a number of properties still re-Testing this conjecture is one of the objectives of the present
mains controversial, particularly in two dimensidi. work.

A key property of alattice model in dimensiord is the Our basic idea is as follows. Consider random walks with
number of allowed SAW configurations with nodes(or  n nodes and constant bond lendihgenerated in the con-
“entropy” of the walks), denoted byc,,. Although no math-
ematical proof yet exists, numerical evidence shows that TABLE I. Estimated connective constants for the 2D lattices in

obeys asymptotic power-law scalifig]: Fig. 1.[The parameter_, computed from the density of nodésn
a lattice, underestimates the effective excluded-volume radius. The

Cchr~au™? 1l n>1, (1) connective constantg(r.,) are computed by using E@7) with

various approximations forg, in terms ofr_. “Exact” results

where u is the lattice-dependembnnective(or “connectiv-  correspond to numerical estimates in ®eS andT lattices. The
ity” ) constant This quantity measures the effective coordi- result for the HC lattice is an analytical conjecture based on 2D spin
nation of the nodes in a long SAWIt also corresponds to models]

the reciprocal of the critical point singularity in the suscep-——
tibility. ) The critical (or “susceptibility”) exponenty is be- ~ Lattice r_/bu(r) w(2r-) w(3r-/2) p(“exact”)

lieved to be universal, i.e., it only depends on the dimensiony~ 0.643 2023 1525 1.796 1.84775906...
ality of the lattice. In the case ofl=2, a nonrigorous 0.606 2.730 2.123 2.451 2855
argument provides what is believed to be éxactvalues for s 0564 2766  2.220 2512 2 6381585
these parameters in thRoneycomb lattice[7]: w=(2 T 0525 4198  3.459 3.851 4.150781

+2Y212=1 8477... andy=43/32 (where y should be the
same for all 2D lattices The exact values gk for other 2D 2Referencd7].
bReferencd 9].

‘Referencd10].

* Author to whom correspondence should be addressed. dReferencd 11].
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Honeycomb lattice (HC) Kagomé lattice (K) mensions, since long chains on a plane have a larger chance
to violate self-avoidance than chains in 3-space. A number of
improved Monte Carlo searches have been designed to rem-
edy the configurational attritiof4]. In our case, we will
actually profit from the critical slowing down to produce
estimations of connective constants.

In the 2D continuum{Py,_,,) depends only om and
y=rd2b, the dimensionless excluded volume radius, where
6 = 0770673 (6 = 0.866 577 ye (0,1). Our first goal is to construct an expression for

(Pw_w) as a function oh andy. Second, by using Eq§l)

and (2), we will derive conclusions for the connective con-

stants in 2D lattices.

Two important properties must be noted. In the limit
y—07, nodes can be close, but the walks are still self-
avoiding, since there are no bond-bond intersections. In the
limit y—1~, there isonly onepossible polymer configura-
tion: the linear rod. In this case, the attrition rate mdit
vergefor all n>2. Thus, qualitatively{Py_,\) would be
expectedi) to increasdpossibly exponentiallywith n for a
fixed y value and (i) to have a singularity[possibly
(1—y) 7, o>0]for all n>2. We have tested these conjec-

FIG. 1. Four 2D lattices studied in this work. The density of tures by computingPy,_) in random walks with variable
nodess is given below each latticéThe densitysis defined as the N andy. The 2D chains were generated by the naive Monte
number of effective nodes per unit cell divided by the area of theCarlo approach discussed before, using steps of constant
cell, measured in units of the lattice spaciny lengthb. (When comparing with 2D lattices, the parameier

will be the lattice spacingFor every pair of valuef,y), we
tinuum using anaive Monte Carlo simulation. In this ap- monitored the number of rejected conformerA,ﬁWiH,

proach, chains are “grown” step by step subject to two cri-petween two consecutive “accepted” configuratiohlsand
teria: (i) there are no bond-bond intersectiofi®., self- ., The mean attrition rate is then computed by averaging
avoidancg (i) nonconnectediodes are never closerto eachp  ~  over 1000 pairs of consecutive “accepted” con-
other than a distance, (i.e., excluded volume interactiqn A
Chains that fail either criterion during “growthare rejected
and not continuedThe result is an ensemble of strictly in-
dependent(uncorrelategl chain configurationsW,. These
chains are a subset of all the possible chains in the co
tinuum (or a latticg, and they span a fractiod({W;}) of
configurational space volume. This fraction can be estimate
with the configurational transition probability w (The
valuew is defined as the probability that two chain conform- """ ! ;
ers W and W', generatectonsecutivelyby a naive Monte rejected conformers increases rapidly frO.KTPW—'W’>.
Carlo algorithm, are in the set of “accepted” com‘iguration3~7082 t0(Py_y)~2.76<10° when the chain length is

{W}.) In a lattice,w; can be expressed as the ratio betweerPOchlieg fromn=f15 ton=30.)| For this work, we 'Zave com—f
the number of SAW’s and the total number of all possiblepu'[e {Pw_.w) for seveny values spanning a wide range o
n-node walks in the lattice, that is, excluded volumegy=1/3000, 1/6, 1/3, 1/2, 2/3, 5/6, and

11/12. For eachy value, we have evaluate@Py_ ) in
w=c,/k", n>1, 2 chains with variable length. For low excluded volume

(y=1/3000), we carried out simulations with
wherek is the number of nearest neighbors in the lattice, n=10,15,20,...,80. For the highest excluded volume (
those at a distandg). In a d-dimensional hypercubic lattice, =11/12), we produced results only for chains with
k=2d. For the lattices in Fig. 1, the values &gc=3,kx  n=5,6,7,...,15. For intermediate valuesyfwe have com-
=4, ks=4, andk;=6. The probabilityw, is also related to  puted(P,,_.,/) in at least eight different chain lengtksee
the mean attrition rate (Py._), representing the mean Fig. 2). In all cases, the simulations employ a powerful ran-
number of rejected chains between two accefgtedepen-  dom number generator with peried2x 108 [12].

Square lattice (S) Triangular lattice (T)

\AANNANA/N
ANANNNNN/

\VAVAVAVAVAVAVAY
ONONNNANN
N\AANNNANN

(6 = 1.00057% (6 = 1.15557%

formers.(We have verified the reliability of our sampling by
checking the scaling behavior of the mean radius of gyration
of the “accepted” chains(R2)Y?~n". With the same con-
rﬁgurations used to calculatPy._ ), We obtainy~0.75
+0.02 in good agreement with the exact resuk; 3/4[7].)

The evaluation of Py,_,) is computationally intensive
gor chains withn>100 (for all y values and for short chains
with y>0.5. (For example, aty=3%, the mean number of

deny conformersw andW': Our numerical result{Fig. 2) confirm the exponential
B 1 growth of the mean attrition rate with for all y values. All
W= (Pwow) @ linear regressions of the type(P._,w) versusn have cor-

I_relation coefficient€=0.9999. Thus, we propose the follow-

The mean attrition rate of the walks describes the well- "
ing general form for the mean attrition rate:

known phenomenon of “critical slowing down” of naive
Monte Carlo searches, where the production of acceptable (Pu_w)=a(y){(y)". (4
conformers becomes more and more difficultnasr r ¢, in-

crease. This phenomenon is particularly severe in two diFrom the slopes in Fig. 2, it is clear that the functidfy)
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20 1 g f ‘€ d » volume interactioncontained in{) and the connective con-
1 A ;e stant u. In other words, we can now define a formal
16 1 ;gp /' gd /'( o b . exclud_ed-volume-dependent “‘connective constant” for
A 1 %0 F/ ;j/ n /Er I's walks in the 2D continuumyg = w(r.,). Conversely, this re-
L T ,ich ;o ‘/ A X‘/ a sult also allows one to associate an “effectivédr mean
121w ,‘ R/ /:( s excluded volume to the connective constanfor a given
f :du -/ﬂ/d /F E()j ./' lattice. Using Eq(5), we obtain our main result:
/lj/‘ ; /‘ , '
é ° é@p A 11(r ) =KB™ (1= o,d2b)". )
ey
4 ;j/’g;/! /Jj )rj Equation(7) is a heuristic representation of the connective
’EV/'/' constant ofany 2D lattice. It describeg. in terms ofthe size
I of a region, centered at a lattice node, where other nodes are
0 : ‘ : ! effectively excluded as monomers of a SAWe radius of
0 20 40 60 80 such a region can be estimated from the compactness of the
n, number of monomers in the chain lattice. Here, we will use theode density in a 2D latticas

a measure of compactness.

FIG. 2. Dependence of the rate of attrition in the 2D continuum  Let § be the number of nodes per unit area in a 2D lattice,
as a function of the number of monomers and the excluded volumewith b the lattice spacing. The parametéris easily com-
[The letters indicate different values of the excluded volume vari-puted from the number of nodes belonging to a unit cell. For
abley=rc/2b, wherey=1/3000(a), 1/6 (b), 1/3(c), 1/2(d), 2/3  example, theT lattice has a triangular unit cefwith A
(e), 5/6 (f), and 11/12g).] =b? sin(n/3)/2, whereA denotes ardaeach of whose ver-

tices belong to six neighboring cells. As a result, each cell
diverges aty—1~. Our results for{(y) as a function of gntains effectively: node, and thus we gat;=1/(2.4)
(1-y) show a singularity, characterized with good precision— 2-2/31/2 Similarly, each cell in th& lattice contains one
as effective node ands=b"2. A2 sig;ilar analysilslzforzthe HC
_ n-s _ _ andK lattices givesd,c=4b™</3*< and 6x=3"Db" /2, re-
{y)=B(l-y)™" B=1.25:002, s=044= 0'01’(5) spectively.(Note that the unit cell in th& lattice haseight
vertices, two of which are shared by two cells each, and six
with C=0.9997 and 95% confidence intervals. Equatin  of which belong to three cells simultaneously. Thus, each
is the main result needed for our present discussion. Neveknit cell contains effectively three verticgszinally, if we
theless, we have also analyzed the preexponeaftia) in associate a disklike are® * with each vertex, we obtain a
Eq. (4). After examining several fitting schemes, its mostlow estimate for a radius of excluded volume as the radius of

accurate two-parameter representation appears to be this disk, i.e.,r_=(m38) Y2 The choicere=r_ should
overestimate the value, since it is equivalent to considering
A(l-y) only compact chaingi.e., chains whose nodes have high
a(y)= (2—y)P’ coordination. In contrast, a reasonable high estimate for the
radius of excluded volume would be 2, considering the
where A=0.98+0.02, p=1.9+0.1, (6)  distance between nodes placed at the centers of their respec-

tive disks. Thus, we conjecture that a good first approxima-
with C=0.9966 and 95% confidence intervdlNote that the tion to an effective excluded volume could be the average
numerator in Eq(6) still ensures the divergence (Py,_, ) between these two values, i.eq=3r _/2.
aty—1~, since 1-ns<0 for all n=3] We have tested these ideas using &y.for the connec-

We have checked the robustness of the fitting in &f. tive constants, where,, is given its various approximations
by performing correlations of the following form: interms ofés. Our results appear in Table | for the lattices in
In{(2—y)XPy_w)/(1—y)} versus In(ty), at constant n Fig. 1. As indicated by Table I, oyx(r.,) values represent
values When pooling our data for aly and 16sn<30, good approximations to the actual numerical estimateg.for
we obtain (i) a slope accurately represented as[7,9-11. As expectedu(r_) overestimatesw (“exact”),
(—0.44+0.03)n and (ii) an intercept that increases linearly whereasu(2r_) is an underestimation. The values com-
as ~(0.225-0.025n, with correlation coefficientsC  puted with the average effective excluded volume,
=0.9991. These results agree well with the numerical valueg.(3r _/2), have (at wors} only a 7% deviation from the
in Eq. (5). [Note that exp(0.2250.025)=1.252+0.031] In  “exact” results. [Empirically, the “exact” results foru
summary, within the accuracy of our simulations, E@9—  could be fitted by using.=er_, wheree is a lattice-

(6) provide a detailed representation of the dependence of thedependent constant. The numerical values dodecrease
mean attrition rate with chain length and excluded volume. from 1.394 in the HC lattice to 1.071 in thelattice, follow-

If we now substitute our expression foP,,_) into the  ing an approximately linear dependence with the lattice den-
transition probabilityw; [Egs.(2) and(3)], we deduce a re- sity 8. This result indicates that a better representation of the
lation between the SAW’s and the excluded volume effecteffective radius of excluded volume could include a correc-
in the continuum, i.e.{ "=aan? 1(u/k)". After retaining tion factor in terms ofd with respect to the expression
the dominant terms fon—o, it becomes{ *=u/k. This re~r_=(wé) Y2 A rough estimation suggests
identity establishes a link between the effect of an excludedq,=2(78) ~Y?— O(8™), with m~0.5]
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In conclusion, Eq(7) appears to provide a simple analyti- less, our main result lies in the evidence presented that the
cal (and semiquantitatiyeexpression for the connective con- properties of the continuuman be usedo relate different
stant of any 2D lattice. The present computationuofe-  |attices. Note that the continuum contains the 2D lattices as
quires only two pieces of information: the number of first particular examples, and therefore it provides the framework
neighbors in the lattic¢k), and a measure of excluded vol- for a unified description valid for all lattices.
ume in terms of the node densify). Without any major In closing, we note that our main results are based on
changes, the present approach could thus be extended g@merical(nonrigorous evidence for the mean attrition rate.
study the attrition rate of walks in the 3D continuum, as aye pelieve that this work should stimulate research on the
tool to estimate the connective constants of common 3D 'atanalytical(rigorous) behavior of(Py,_.w/) as a function of
tices. _ _ __ chain length and excluded volume.

In principle, ouru estimates could be improved by refin-
ing the fitting of(Py_,w) with longer chains, and by devis- This work was supported by FRU(Laurentian and by
ing better measures of effective excluded volume. Neverthegrants from NSERGCanada
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