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Estimation of connective constants for two-dimensional lattices from self-avoiding walks
in the two-dimensional continuum
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Département de Chimie et Biochimie, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6
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The attrition rate of random walks with excluded volume,^PW→W8&, represents the mean number of
‘‘failed’’ ~or ‘‘rejected’’! chains between any two successfully embeddedindependentconfigurationsW and
W8. In this work, we studŷ PW→W8& as a function of the number of monomers and the excluded volume
interaction for chains in the two-dimensional continuum. Our result can also be applied to lattice models,
provided that an ‘‘effective’’ radius of excluded volume is introduced. The relation between the^PW→W8&
values in the continuum and in lattice models leads to a simple analytical approximation for the connective
constants of all common two-dimensional lattices.
@S1063-651X~98!02211-9#

PACS number~s!: 05.50.1q, 87.15.By, 02.70.Lq
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Polymers in solution behave as flexible molecules, wh
instantaneous spatial configurations can be approximate
random walks on a lattice or the continuum@1#. In this work,
we are interested in some properties of two-dimensional~2D!
polymers. These models are a convenient tool to study
sorption and critical phenomena on surfaces@2#. When mod-
eling polymer behavior in a good solvent@3#, two ap-
proaches are commonly followed: random walks w
excluded volume interaction in the 2D continuum, or se
avoiding walks~SAW’s! embedded in a particular 2D lattice
Here, we discuss some relations between these two mo

In our case, we deal with the simplest SAW model, o
where chains haven identical monomers~i.e., the ‘‘nodes’’
or ‘‘vertices’’ of the walk!. Many properties of this mode
have been well characterized@4#. A great deal of work has
been devoted to study the mean shape properties of SA
in particular their leading scaling behavior@5#. The nature of
the corrections to scaling in a number of properties still
mains controversial, particularly in two dimensions@6#.

A key property of alattice model in dimensiond is the
number of allowed SAW configurations withn nodes~or
‘‘entropy’’ of the walks!, denoted bycn . Although no math-
ematical proof yet exists, numerical evidence shows thacn
obeys asymptotic power-law scaling@4#:

cn'amnng21, n@1, ~1!

wherem is the lattice-dependentconnective~or ‘‘connectiv-
ity’’ ! constant. This quantity measures the effective coord
nation of the nodes in a long SAW.~It also corresponds to
the reciprocal of the critical point singularity in the susce
tibility. ! The critical ~or ‘‘susceptibility’’! exponentg is be-
lieved to be universal, i.e., it only depends on the dimensi
ality of the lattice. In the case ofd52, a nonrigorous
argument provides what is believed to be theexactvalues for
these parameters in thehoneycomb lattice@7#: m5(2
121/2)1/251.8477... andg543/32 ~where g should be the
same for all 2D lattices!. The exact values ofm for other 2D
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lattices are not known, although numerical estimations a
some rigorous bounds are available@8#. The best current es
timates appear in the last column of Table I@9–11#. ~The
four 2D lattices discussed here are indicated in Fig. 1.
shall use the shorthand notation HC lattice,K lattice, S lat-
tice, and T lattice when referring to the honeycomb
Kagomé, square, and triangular lattices, respectively.!

Connective constants are important parameters in
modeling of lattice polymers, since they can be used
computing some configurationally averaged physical prop
ties. In this work, our goal is to estimate the different co
nective constants by usinga single unified approach. To this
end, we will establish a relationship between walks with e
cluded volume in the 2D continuum and SAW’s in particul
2D lattices. Since all the lattices are particular cases of
continuum, the latter can provide insights on underlyi
common properties not available from single-lattice studi
Testing this conjecture is one of the objectives of the pres
work.

Our basic idea is as follows. Consider random walks w
n nodes and constant bond lengthb, generated in the con

TABLE I. Estimated connective constants for the 2D lattices
Fig. 1.@The parameterr 2 , computed from the density of nodesd in
a lattice, underestimates the effective excluded-volume radius.
connective constantsm(r ex) are computed by using Eq.~7! with
various approximations forr ex in terms of r 2 . ‘‘Exact’’ results
correspond to numerical estimates in theK, S, andT lattices. The
result for the HC lattice is an analytical conjecture based on 2D s
models.#

Lattice r 2 /b m(r 2) m(2r 2) m(3r 2/2) m ~‘‘exact’’ !

HC 0.643 2.023 1.525 1.796 1.84775906..a

K 0.606 2.730 2.123 2.451 2.555b

S 0.564 2.766 2.220 2.512 2.6381585c

T 0.525 4.198 3.459 3.851 4.150781d

aReference@7#.
bReference@9#.
cReference@10#.
dReference@11#.
6817 © 1998 The American Physical Society
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tinuum using anaive Monte Carlo simulation. In this ap
proach, chains are ‘‘grown’’ step by step subject to two c
teria: ~i! there are no bond-bond intersections~i.e., self-
avoidance!; ~ii ! nonconnectednodes are never closer to ea
other than a distancer ex ~i.e., excluded volume interaction!.
Chains that fail either criterion during ‘‘growth’’are rejected
and not continued. The result is an ensemble of strictly in
dependent~uncorrelated! chain configurationsWi . These
chains are a subset of all the possible chains in the c
tinuum ~or a lattice!, and they span a fractionV($Wi%) of
configurational space volume. This fraction can be estima
with the configurational transition probability wt . ~The
valuewt is defined as the probability that two chain conform
ers W and W8, generatedconsecutivelyby a naive Monte
Carlo algorithm, are in the set of ‘‘accepted’’ configuratio
$Wi%.! In a lattice,wt can be expressed as the ratio betwe
the number of SAW’s and the total number of all possib
n-node walks in the lattice, that is,

wt5cn /kn, n@1, ~2!

wherek is the number of nearest neighbors in the lattice~i.e.,
those at a distanceb!. In a d-dimensional hypercubic lattice
k52d. For the lattices in Fig. 1, the values arekHC53, kK
54, kS54, andkT56. The probabilitywt is also related to
the mean attrition rate, ^PW→W8&, representing the mea
number of rejected chains between two accepted~indepen-
dent! conformersW andW8:

wt5^PW→W8&
21. ~3!

The mean attrition rate of the walks describes the w
known phenomenon of ‘‘critical slowing down’’ of naive
Monte Carlo searches, where the production of accept
conformers becomes more and more difficult asn or r ex in-
crease. This phenomenon is particularly severe in two

FIG. 1. Four 2D lattices studied in this work. The density
nodesd is given below each lattice.~The densityd is defined as the
number of effective nodes per unit cell divided by the area of
cell, measured in units of the lattice spacingb.!
-

n-

d

n

l-

le

i-

mensions, since long chains on a plane have a larger ch
to violate self-avoidance than chains in 3-space. A numbe
improved Monte Carlo searches have been designed to
edy the configurational attrition@4#. In our case, we will
actually profit from the critical slowing down to produc
estimations of connective constants.

In the 2D continuum,̂ PW→W8& depends only onn and
y5r ex/2b, the dimensionless excluded volume radius, wh
yP(0,1). Our first goal is to construct an expression
^PW→W8& as a function ofn andy. Second, by using Eqs.~1!
and ~2!, we will derive conclusions for the connective co
stants in 2D lattices.

Two important properties must be noted. In the lim
y→01, nodes can be close, but the walks are still se
avoiding, since there are no bond-bond intersections. In
limit y→12, there isonly onepossible polymer configura
tion: the linear rod. In this case, the attrition rate mustdi-
verge for all n.2. Thus, qualitatively,̂ PW→W8& would be
expected~i! to increase~possibly exponentially! with n for a
fixed y value and ~ii ! to have a singularity@possibly
(12y)2s, s.0# for all n.2. We have tested these conje
tures by computinĝPW→W8& in random walks with variable
n andy. The 2D chains were generated by the naive Mo
Carlo approach discussed before, using steps of cons
lengthb. ~When comparing with 2D lattices, the parameteb
will be the lattice spacing.! For every pair of values~n,y!, we
monitored the number of rejected conformers,PWi→Wi 11

,

between two consecutive ‘‘accepted’’ configurationsWi and
Wi 11 . The mean attrition rate is then computed by averag
PWi→Wi 11

over 1000 pairs of consecutive ‘‘accepted’’ co
formers.~We have verified the reliability of our sampling b
checking the scaling behavior of the mean radius of gyrat
of the ‘‘accepted’’ chains,̂RG

2 &1/2;nn. With the same con-
figurations used to calculatêPW→W8&, we obtainn'0.75
60.02 in good agreement with the exact result,n53/4 @7#.!

The evaluation of̂ PW→W8& is computationally intensive
for chains withn.100 ~for all y values! and for short chains
with y.0.5. ~For example, aty5 2

3 , the mean number o
rejected conformers increases rapidly from̂PW→W8&
'7082 to ^PW→W8&'2.763108 when the chain length is
doubled fromn515 ton530.! For this work, we have com-
puted^PW→W8& for seveny values spanning a wide range o
excluded volumes~y51/3000, 1/6, 1/3, 1/2, 2/3, 5/6, an
11/12!. For eachy value, we have evaluated̂PW→W8& in
chains with variable length. For low excluded volum
(y51/3000), we carried out simulations wit
n510,15,20,...,80. For the highest excluded volumey
511/12), we produced results only for chains wi
n55,6,7,...,15. For intermediate values ofy, we have com-
puted^PW→W8& in at least eight different chain lengths~see
Fig. 2!. In all cases, the simulations employ a powerful ra
dom number generator with period;231018 @12#.

Our numerical results~Fig. 2! confirm the exponentia
growth of the mean attrition rate withn for all y values. All
linear regressions of the type ln^PW→W8& versusn have cor-
relation coefficientsC>0.9999. Thus, we propose the follow
ing general form for the mean attrition rate:

^PW→W8&5a~y!z~y!n. ~4!

From the slopes in Fig. 2, it is clear that the functionz(y)
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diverges aty→12. Our results forz(y) as a function of
(12y) show a singularity, characterized with good precisi
as

z~y!5B~12y!2s, B51.2560.02, s50.4460.01,
~5!

with C50.9997 and 95% confidence intervals. Equation~5!
is the main result needed for our present discussion. Ne
theless, we have also analyzed the preexponentiala(y) in
Eq. ~4!. After examining several fitting schemes, its mo
accurate two-parameter representation appears to be

a~y!5
A~12y!

~22y!p ,

where A50.9860.02, p51.960.1, ~6!

with C50.9966 and 95% confidence intervals.@Note that the
numerator in Eq.~6! still ensures the divergence of^PW→W8&
at y→12, since 12ns,0 for all n>3.#

We have checked the robustness of the fitting in Eq.~5!
by performing correlations of the following form
ln$(22y)2^PW→W8&/(12y)% versus ln(12y), at constant n
values. When pooling our data for ally and 10<n<30,
we obtain ~i! a slope accurately represented
(20.4460.03)n and ~ii ! an intercept that increases linear
as ;(0.22560.025)n, with correlation coefficientsC
>0.9991. These results agree well with the numerical val
in Eq. ~5!. @Note that exp(0.22560.025)51.25260.031.# In
summary, within the accuracy of our simulations, Eqs.~4!–
~6! provide a detailed representation of the dependence o
mean attrition rate with chain length and excluded volum

If we now substitute our expression for^PW→W8& into the
transition probabilitywt @Eqs.~2! and ~3!#, we deduce a re-
lation between the SAW’s and the excluded volume effe
in the continuum, i.e.,z2n5aang21(m/k)n. After retaining
the dominant terms forn→`, it becomesz215m/k. This
identity establishes a link between the effect of an exclu

FIG. 2. Dependence of the rate of attrition in the 2D continu
as a function of the number of monomers and the excluded volu
@The letters indicate different values of the excluded volume v
able y5r ex/2b, wherey51/3000~a!, 1/6 ~b!, 1/3 ~c!, 1/2 ~d!, 2/3
~e!, 5/6 ~f!, and 11/12~g!.#
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volume interaction~contained inz! and the connective con
stant m. In other words, we can now define a form
excluded-volume-dependent ‘‘connective constant’’ f
walks in the 2D continuum,m5m(r ex). Conversely, this re-
sult also allows one to associate an ‘‘effective’’~or mean!
excluded volume to the connective constantm for a given
lattice. Using Eq.~5!, we obtain our main result:

m~r ex!5kB21~12r ex/2b!s. ~7!

Equation~7! is a heuristic representation of the connecti
constant ofany2D lattice. It describesm in terms ofthe size
of a region, centered at a lattice node, where other nodes
effectively excluded as monomers of a SAW. The radius of
such a region can be estimated from the compactness o
lattice. Here, we will use thenode density in a 2D latticeas
a measure of compactness.

Let d be the number of nodes per unit area in a 2D latti
with b the lattice spacing. The parameterd is easily com-
puted from the number of nodes belonging to a unit cell. F
example, theT lattice has a triangular unit cell@with A
5b2 sin(p/3)/2, whereA denotes area#, each of whose ver-
tices belong to six neighboring cells. As a result, each c
contains effectively1

2 node, and thus we getdT51/(2A)
52b22/31/2. Similarly, each cell in theS lattice contains one
effective node anddS5b22. A similar analysis for the HC
andK lattices givesdHC54b22/33/2 anddK531/2b22/2, re-
spectively.~Note that the unit cell in theK lattice haseight
vertices, two of which are shared by two cells each, and
of which belong to three cells simultaneously. Thus, ea
unit cell contains effectively three vertices.! Finally, if we
associate a disklike aread21 with each vertex, we obtain a
low estimate for a radius of excluded volume as the radius
this disk, i.e., r 25(pd)21/2. The choicer ex5r 2 should
overestimate them value, since it is equivalent to considerin
only compact chains~i.e., chains whose nodes have hig
coordination!. In contrast, a reasonable high estimate for
radius of excluded volume would be 2r 2 , considering the
distance between nodes placed at the centers of their res
tive disks. Thus, we conjecture that a good first approxim
tion to an effective excluded volume could be the avera
between these two values, i.e.,r ex53r 2/2.

We have tested these ideas using Eq.~7! for the connec-
tive constants, wherer ex is given its various approximation
in terms ofd. Our results appear in Table I for the lattices
Fig. 1. As indicated by Table I, ourm(r ex) values represen
good approximations to the actual numerical estimates fom
@7,9–11#. As expected,m(r 2) overestimatesm ~‘‘exact’’ !,
whereasm(2r 2) is an underestimation. The values com
puted with the average effective excluded volum
m(3r 2/2), have ~at worst! only a 7% deviation from the
‘‘exact’’ results. @Empirically, the ‘‘exact’’ results form
could be fitted by usingr ex5«r 2 , where « is a lattice-
dependent constant. The numerical values for« decrease
from 1.394 in the HC lattice to 1.071 in theT lattice, follow-
ing an approximately linear dependence with the lattice d
sity d. This result indicates that a better representation of
effective radius of excluded volume could include a corre
tion factor in terms ofd with respect to the expressio
r ex;r 25(pd)21/2. A rough estimation suggest
r ex52(pd)21/22O(dm), with m;0.5.#
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In conclusion, Eq.~7! appears to provide a simple analy
cal ~and semiquantitative! expression for the connective con
stant of any 2D lattice. The present computation ofm re-
quires only two pieces of information: the number of fir
neighbors in the lattice~k!, and a measure of excluded vo
ume in terms of the node density~d!. Without any major
changes, the present approach could thus be extende
study the attrition rate of walks in the 3D continuum, as
tool to estimate the connective constants of common 3D
tices.

In principle, ourm estimates could be improved by refin
ing the fitting of^PW→W8& with longer chains, and by devis
ing better measures of effective excluded volume. Never
.
e

ys
.

to

t-

e-

less, our main result lies in the evidence presented that
properties of the continuumcan be usedto relate different
lattices. Note that the continuum contains the 2D lattices
particular examples, and therefore it provides the framew
for a unified description valid for all lattices.

In closing, we note that our main results are based
numerical~nonrigorous! evidence for the mean attrition rate
We believe that this work should stimulate research on
analytical~rigorous! behavior of^PW→W8& as a function of
chain length and excluded volume.

This work was supported by FRUL~Laurentian! and by
grants from NSERC~Canada!.
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